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Turbulent dynamics of pipe flow captured
in a reduced model: puff relaminarization

and localized ‘edge’ states
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Fully three-dimensional computations of flow through a long pipe demand a huge
number of degrees of freedom, making it very expensive to explore parameter space
and difficult to isolate the structure of the underlying dynamics. We therefore introduce
a ‘2 + ε-dimensional’ model of pipe flow, which is a minimal three-dimensionalization
of the axisymmetric case: only sinusoidal variation in azimuth plus azimuthal shifts are
retained; yet the same dynamics familiar from experiments are found. In particular
the model retains the subcritical dynamics of fully resolved pipe flow, capturing
realistic localized ‘puff-like’ structures which can decay abruptly after long times, as
well as global ‘slug’ turbulence. Relaminarization statistics of puffs reproduce the
memoryless feature of pipe flow and indicate the existence of a Reynolds number
about which lifetimes diverge rapidly, provided that the pipe is sufficiently long.
Exponential divergence of the lifetime is prevalent in shorter periodic domains. In
a short pipe, exact travelling-wave solutions are found near flow trajectories on
the boundary between laminar and turbulent flow. In a long pipe, the attracting
state on the laminar–turbulent boundary is a localized structure which resembles a
smoothened puff. This ‘edge’ state remains localized even for Reynolds numbers at
which the turbulent state is global.

1. Introduction
Laminar flow through a pipe is possible under controlled laboratory conditions up

to flow rates well beyond those at which turbulence is typically observed. Pfenniger
(1961) achieved laminar flow at Reynolds numbers as high as 100 000, Re := UD/ν,
where U is the mean axial speed, D the diameter and ν the kinematic viscosity,
indicating that rather than the transition to turbulence being via a linear instability,
some other mechanism must be responsible. Given an initial disturbance of sufficiently
large amplitude, self-sustained turbulence is observed for Re of approximately 2000.
This turbulent flow exhibits distinct spatial structures at different flow rates. For
Re up to around 2250 the region of turbulence remains localized, with a length of
approximately 20D, and is referred to as a ‘puff’ (Wygnanski & Champagne 1973). At
larger flow rates these puffs slowly delocalize by splitting into two or more puffs. At
much larger Re, of around 2800, the disturbances develop into a rapidly expanding
active region of turbulence, referred to as a ‘slug’. No explanation has been offered
that predicts such a progression in flow regimes, and many issues remain unresolved.
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The dynamics of perturbations at transitional Reynolds numbers is believed to be
strongly influenced by a rapidly increasing number of branches of exact solutions that
have been found to appear at these Re (Faisst & Eckhardt 2003; Wedin & Kerswell
2004; Kerswell 2005; Pringle & Kerswell 2007; Pringle, Duguet & Kerswell 2008). At
Re < 1750, puffs are observed to suddenly and unexpectedly decay in experiments
(Peixinho & Mullin 2006), and it has been suggested that the turbulent state wanders
between these unstable solutions before relaminarizing (Faisst & Eckhardt 2004; Hof
et al. 2004). The same data also suggest that the mean lifetime for a puff becomes
infinite at Re = 1750, indicating that the puffs become permanent states at this point
(Peixinho & Mullin 2006). This critical Re has been reproduced to within 7 %, using
numerical computations which adopted the experimental protocol for initiating the
puffs and worked within a long periodic pipe of 50D, so as to realistically capture the
puff structure (Willis & Kerswell 2007a). However, experiments using a different way
of initiating the puffs and designed to capture longer puff transients claim that no
such critical Re exists (Hof et al. 2006). Simulations also presented there in a short
≈5D pipe appear to support this conclusion. The obvious question is then whether
numerically simulated turbulence which fills a short pipe has the same relaminarization
characteristics as localized puff turbulence captured in longer numerical domains. A
complete statistical study using fully resolved three-dimensional computations across
a spectrum of periodic pipe domains remains prohibitively expensive, whereas a survey
using a realistic model system could provide a clarifying demonstration of difference.

Evidence has also emerged recently that many of the exact solutions known thus
far sit on a separatrix between laminar and turbulent states, forming an ‘edge’ to the
chaotic region of phase space (Kerswell & Tutty 2007; Schneider, Eckhardt & Yorke
2007b; Duguet, Willis & Kerswell 2008; Willis & Kerswell 2008). (See Itano & Toh
2001, Viswanath 2007 and Wang, Waleffe & Gibson 2007 for similar observations in
channel and plane Couette flow.) Schneider et al. (2007b) have examined the dynamics
of flow restricted to lie in this separatrix in a short 5D pipe, finding at long times
a chaotic attractor apparently centred on a simple travelling wave solution (Pringle
& Kerswell 2007). In such a short pipe, the turbulence naturally fills the pipe when
triggered, and the laminar–turbulent boundary end state, or ‘edge’ state, is also a
global state. In a longer ( � 25D) pipe, however, localized puffs are the naturally
triggered state at low Re, which raises the issue of what the corresponding ‘edge’ state
is and how it varies with Re. For example is it initially localized, and does it lose
localization at the same Re as the turbulent puff? Again, a realistic model system can
suggest probable answers to these questions quickly.

The use of model systems is well established in plane Couette flow, which exhibits
the same abrupt subcritical transition behaviour as pipe flow. Several approaches have
been designed to reduce the number of degrees of freedom of this problem in order
develop more tractable models. The minimal flow unit introduced by Jiménez & Moin
(1991) has been useful in identifying the key components that lead to self-sustaining
turbulence in a very small domain (Hamilton, Kim & Waleffe 1995). The model by
Lagha & Manneville (2007) severely truncates the degrees of freedom in the cross-
stream direction but captures spanwise and streamwise spatial structures observed
in plane Couette flow. Using this model, attempts have been made to measure the
lifetime of localized turbulence and determine the characteristic structures seen during
the relaminarization process itself. Currently, such calculations would be prohibitively
expensive for fully three-dimensional models. Severe truncation to only a few Fourier
modes in the tilted crosswise direction has also proven useful in determining the
origin of oblique bands in plane Couette flow (Barkley & Tuckerman 2007).
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The aim of this paper is to establish a model system which preserves the rich
dynamics of pipe flow but reduces the number of degrees of freedom of the system
so considerably that the two current issues mentioned above can be probed. The
price paid for this reduction is, of course, a close quantitative match with fully three-
dimensional pipe flow. But this is more than counterbalanced by the ability to isolate
and explore, for example, a ‘puff-like’ structure in a much more accessible system.
The issues to be addressed within the reduced system are as follows: (a) Do the
relaminarization statistics for turbulent puffs differ in character between short and
long pipes? In particular, do long-pipe simulations indicate a critical Re for sustained
puffs, whereas short-pipe simulations do not? (b) And what does the attracting ‘edge’
state in the laminar–turbulent boundary look like in a long pipe? Is it localized like
a puff, and if so, does it delocalize at the same Re as a puff?

Previous attempts to find such a reduced model have focused on axisymmetric pipe
flow (Patera & Orszag 1981) and helical pipe flow (Landman 1990a,b), but in both
cases the subcritical dynamics of pipe flow is not retained. We briefly revisit these cal-
culations to search afresh for evidence of turbulent transients before introducing a new
2+ε-dimensional model which retains the salient features of fully three-dimensional
pipe flow. The presentation starts by discussing the formulation used for the calcula-
tions performed throughout this and earlier work (Willis & Kerswell 2007a , 2008).

2. Formulation
Given diameter D and fixed mean axial speed U , it is numerically convenient to

scale lengths by D/2 and velocities by 2U in the Navier–Stokes equations, leading to

(∂t + u · ∇)u = −∇p +
4

Re
(1 + β) ẑ +

1

Re
∇2u, (2.1)

where the non-dimensional variable β is the fractional pressure gradient, additional
to the laminar flow, required to maintain a steady U . A Reynolds number Rep ,
based on the applied pressure gradient, is given by Rep =Re (1 + β). Our numerical
formulation is based on the potential formulation of Marqués (1990), which is further
re-expressed to ease numerical solution. An averaging operator is introduced in the
axial direction, z, which is periodic over a length L =2π/α,

Pz (·) =
1

L

∫ L

0

(·) dz. (2.2)

The velocity, u, is then expressed in terms of a potential ψ =ψ(r, θ, z), the axially
independent flow h = h(r, θ) and a purely axially dependent potential φ = φ(r, θ, z),

u = h ẑ + ∇ ∧ ( ẑψ) + ∇ ∧ ∇ ∧ ( ẑφ), (2.3)

such that Pz φ = 0. Writing the nonlinear terms as b =(u · ∇) u, the governing
equations become (

∂t − 1

Re
∇2

)
h = −Pz ẑ · b,(

∂t − 1

Re
∇2

)
∇2∇2

hφ = −(1 − Pz) ẑ · ∇ ∧ ∇ ∧ b, (2.4)(
∂t − 1

Re
∇2

)
∇2

hψ = ẑ · ∇ ∧ b,
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where ∇2
h := ∇2 − ∂zz. For a boundary condition u = g(θ, z), conditions on the

potentials are

h = 0, φ = 0, −∂rψ = gθ , −∇2
hφ = gz, (2.5)

1
r
∂θψ + ∂rzφ = gr, ∂rz∇2

hψ − 1
r
∂θ∇2∇2

hφ = Re r̂ · ∇ ∧ b − ∂zz r̂ · ∇ ∧ g

(see Appendix A for details). Note that r̂ · ∇ ∧ b = 0 on the boundary unless an
internal body force is added. Variables are expanded in Fourier modes:

A(r, θ, z) =
∑
k,m

Akm(r) exp(iαkz + imθ). (2.6)

As the variables are real, their coefficients satisfy the property Akm = A∗
−k,−m, where

∗ indicates the complex conjugate, and therefore only the coefficients with m � 0
are kept. Numerical truncation in k and m is discussed in following sections. The
operator Pz picks out k = 0 modes, and (1 − Pz) retrieves k �= 0 modes. In addition
to the boundary conditions (2.5), regularity at the axis imposes symmetries on the
Fourier modes across the axis. For the potentials, each mode is even or odd in r if
m is even or odd, respectively.

The system for h is simple to solve, as it is second order and has two conditions
on h, one at the boundary and a symmetry condition at the axis. The system for ψ

and φ is more difficult to invert, as it is coupled through the boundary condition. To
enable numerical solution we reformulate the system for ψ and φ into a set of five
equations, each second order in r , and use an influence matrix technique to bypass
the coupled boundary condition (see Appendix B for details).

Both finite-difference and Chebyshev expansions have been used in radius. The
latter is better at low radial resolution, but the former involves only banded matrices
(a 9-point stencil is used), requiring less memory, and is faster for high radial
resolutions. Time discretization is second order, using Crank–Nicolson for the
diffusion term and a Euler predictor step for the nonlinear terms. Information from
a Crank–Nicolson corrector step is used to control the time step size. Nonlinear
terms, b, are evaluated using the pseudo-spectral method and are dealiased using
the 3/2 rule. The code was tested to reproduce eigenvalues about the laminar state,
eigenvalues about nonlinear travelling wave solutions from Wedin & Kerswell (2004),
by direct comparison with a primitive variable code (Kerswell & Tutty 2007) during
the relaminarization of a perturbed travelling wave, and to calculate the turbulent
statistics of Eggels et al. (1994).

3. The absence of turbulence in previous models
The original calculations for axisymmetric pipe flow (Patera & Orszag 1981) and

helical flow (Landman 1990a) found no evidence for turbulence or even long transients
at Re � 4000. Here we show that this conclusion extends to Re as large as 105 and
huge initial disturbances, suggesting that there are no exact unstable solutions beyond
Hagen–Poiseuille flow within these dynamical subspaces.

The axisymmetric model is straightforward to simulate using the numerical
algorithm described above by time stepping only the modes with m =0. In helical
flow, variations in θ and z are reduced to a dependency in the one variable ξ = θ +αz,
where α is the pitch of the helix, and periodicity over L = 2π/α is preserved. In
this scenario the flow may be expanded, u(r, ξ ) =

∑
q uq(r) exp(iqξ ), corresponding to

taking only modes k =m → q in our formulation. Letting u′ be the deviation from
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Figure 1. Decay of axisymmetric (dashed) and helical (solid) perturbations, initially of
energy up to 40 % of the laminar profile (Re =10 000 and pipe 2πD long).

the laminar flow, random initial disturbances of the form

u′ =
∑

k2+m2 �=0

r2(1 − r)2 (α2k2 + m2)− 1
2 akm exp(iαkz + imθ), (3.1)

were applied to the flow (after projection onto the space of solenoidal functions to
enforce incompressibility), where the components of akm were random numbers in �
s.t. |akm| =1.

Figure 1 shows time evolution of random disturbances at Re = 10 000 for a pipe of
length 2πD. Initial disturbances were normalized for E′

k �=0/E0 up to 0.4, where E′
k �=0 is

the energy of the axially dependent modes and E0 is the energy of the laminar profile;
i.e. disturbances of up to 40 % of the energy of the laminar flow were considered.
By way of comparison, the turbulent test case of Eggels et al. (1994) has only
E′

k �=0/E0 ≈ 0.014 at Re =5300. The number of finite difference points in radius and
truncation of the Fourier modes was (160, ±256) in (r, z) and (r, ξ ); the large radial
resolution was required to stably solve for such high initial energies. Axisymmetric
disturbances show little sign of nonlinear interactions at this Re and decay almost
monotonically. Five other sets of runs for other random disturbances showed similar
behaviour. Helical flow is slightly more promising, showing occasional moments of
growth against a dominant decay.

Helical flow exhibits a linear instability at relatively small rotation rates about
the axis, which occurs at longer L for larger Re (Mackrodt 1976). This supercritical
bifurcation and the subsequent nonlinear waves (Toplosky & Akylas 1988; Landman
1990 b) provided an excellent test of the helical code. Measuring the rotation rate by
RΩ = (1/4)Ω Re, where the angular velocity Ω is in units U/D, there is a supercritical
bifurcation to helical waves at RΩ = −52.43, Re = 4000 and L = 16πD. Figure 2
shows evolution of five random initial disturbances of E′

k �=0/E0 up to 0.3 in the
presence of rotation – truncation at (80, ±128) in (r, ξ ). For RΩ = −50 the flow
quickly returns the the parabolic profile. At RΩ = −100 and −300, well beyond the
linear instability, the flow rapidly returns to a finite-amplitude helical wave flow. This
supercritical behaviour persists for modest rotations so that no long-term turbulent
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Figure 2. Large helical disturbances scaled from 4 % to 20 % of E0 rapidly settle to parabolic
flow for RΩ = −50 and to laminar helical waves for RΩ = −100, −300 (Re = 4000, L =16πD).

transients can be generated. Barnes & Kerswell (2000) have shown that these helical
waves themselves undergo a supercritical Hopf bifurcation so that solutions cannot
obviously be traced back to non-rotating flow. Figure 2 suggests that disconnected
branches which could lead to subcritical turbulence in rotating helical pipe flow are
unlikely to exist.

Our calculations suggest that rotating helical pipe flow follows the supercritical
route to turbulence via a sequence of supercritical bifurcations rather than the abrupt
subcritical behaviour of three-dimensional non-rotating pipe flow. Having seen strong
decay at Re approximately five times that for which turbulence is observed in the
laboratory, it appears that neither dynamics restricted to helical nor axisymmetric
subspaces are relevant for the observed transition.

4. A 2+ε-dimensional model
We now introduce a third model which has high resolution in the cross-stream

(radial) and streamwise (axial) directions but only a few modes in the spanwise
(azimuth) direction. The model was chosen to preserve a high radial resolution, as
streak features close to the wall appear to be important in the self-sustaining process
as do detachments from the wall during the relaminarization stages of low Reynolds
number turbulence. High axial resolution was retained to allow the possibility of
localized turbulent structures. This left only the azimuthal direction in which to
reduce the number of degrees of freedom: only Fourier modes m =0, ±m0 were
considered, which corresponds to a sinusoidal variation in azimuth, an azimuthal
shift of the sinusoid and a mean mode.

4.1. Spatial characteristics

Localized structures, surprisingly similar to puffs, were captured by the 2+ε-
dimensional model. Figure 3 compares a puff structure from a simulation fully
resolved in azimuth (all m up to ±24) with a ‘puff’ from the 2+ε-dimensional
model (m = −3, 0, 3). The plots are of the correct aspect ratio, but only half of
the computational domain is shown. Puffs from the model appear to be similar to
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Figure 3. Axial vorticity in the (r, z)-plane, 1:1 aspect ratio, flow up the page; only 25D
of a periodic 50D domain shown. From left to right: fully three-dimensional simulations at
Re = 2000, 2300, 2700 and 2+ε-dimensional simulations at Re = 2600, 3200, 4000. Presented
for both models are localized ‘puffs’, the early stages of delocalization by the generation of a
second puff downstream and global slug turbulence at larger Re. Far right: Energy in separate
components of the velocity as a function of axial position (units D2U 2) for the model puff
snapshot at Re= 2600.

resolved puffs in both length and structure, having a smooth upstream region close
to the wall, an active turbulent region and a dissipative region downstream (although
note the different Re). Only modest radial resolutions were required to observe such
structures: a spectral resolution of 35 Chebyshev modes was used for the calculations
of this section. Several calculations were performed with a lower resolution of 25
radial modes, but puff structures tended to elongate, requiring a longer pipe and thus
offsetting the reduction in computation times. The energy plot in figure 3 shows that
the while the axial deviation from the mean flow is extended, 20 D or greater, the
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Figure 4. Initial trials of the 2+ε-dimensional model for several m-fold rotational
symmetries.

roll components are highly localized, extending only 5–10D. Such localization of the
active region of the flow has been observed in the fully three-dimensional case (Willis
& Kerswell 2008).

Axial resolution was chosen to approximately match the spectral drop-off in r

(approximately four orders in the magnitude of the spectral coefficients or eight orders
in the power spectrum) and was ±384 for L = 16π D ≈ 50 diameters. Axial resolution
was changed proportionally for other L considered in the rest of this section, hence
keeping the smallest resolved scale fixed. Puffs were found to translate within 2 %
of U , slightly faster than in three dimensions, where they travel approximately 10 %
slower. Also shown in figure 3 is that the transition from localized to global turbulence
is gradual, as observed experimentally. At larger Re the puff becomes delocalized,
splitting into two or more localized turbulent regions with relatively laminar regions
in between. At much larger Re the proportion of vigorous turbulence is seen to
increase, as recorded by Gilbrech & Hale (1965).

4.2. Temporal characteristics

Another important feature captured by the model is that localized puffs may survive
for long times before a sudden decay as observed experimentally (Peixinho & Mullin
2006). Typical transients for different m0 are shown in figure 4 which indicates that
higher rotational symmetries tend to decay more quickly. As structures of threefold
rotational symmetry are the most frequently observed for transitional Re (Duggleby
et al. 2007; Kerswell & Tutty 2007; Schneider, Eckhardt & Vollmer 2007a; Willis &
Kerswell 2008), m0 = 3 was chosen for analysis of the lifetimes of disturbances. For
this m0, azimuthal length scales are also comparable to the radial length scale in the
model. Figure 5 shows the probability distribution function for puff lifetimes based
upon 100 runs at each of several Re in a pipe ≈100D long (L = 32πD). Sets of initial
puff conditions were generated from snapshots of a long run at a sufficiently large Re,
similar to the annealing procedure adopted in Peixinho & Mullin (2006) and Willis
& Kerswell (2007a). No dependence on the initial condition was observed, however,
other than in the very early times of the transient. For the model, times of order
104 D/U could be achieved, significantly longer than achieved in Willis & Kerswell
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Figure 5. Probability of transient surviving to time T in the m0 = 3 model for a pipe of ≈100
diameters (L =32πD); 100 observations per Re. See the text for how the ‘best fit’ lines were
drawn.

(2007a) and in less computation time. The log-plot shows an exponential distribution
indicating a memoryless process.

Slopes in figure 5 are based on a median time τ calculated by the bootstrapping
method adopted in Willis & Kerswell (2007b). The shorter slopes represent 95 %
confidence intervals for the slope of the data at Re =3000, and are accurately
calculated by the bootstrapping method. The best fit line was found to be poor
estimator of the mean, being overly sensitive to rare events (e.g. the outlier in figure
5 for Re = 2900), and the goodness-of-fit does not provide the correct error estimate.
In the bootstrapping method, samples of size N are generated by resampling from
the original N observations, with equal probability of selecting each. This is repeated
100 000 times, and the distribution of the means of the samples provides an accurate
confidence interval for the mean of the original data set. When all data fall within
a maximum observation time, the confidence intervals generated by this method
converge to those predicted by the central limit theorem. A 95 % confidence interval
for τ is approximately τ ± 2τ/

√
N . The method is particularly useful when the data

are truncated in time, and therefore a mean cannot be directly calculated. The
bootstrapping method easily accommodates such data by further resampling when a
truncated point is chosen. Any additional error associated with the extra resampling
is reflected in a wider confidence interval.

Estimating the median lifetime of a puff from the data is subject to two sources
of error: the initial transition period during which the flow evolves from the initial
condition to become a puff and the presence of a final relaminarization phase. The
former is eliminated by considering each of the first observations as an initial cutoff
time and by examination of the effect of the cutoff on the estimator τ . See Willis &
Kerswell (2007b) for an example plot of τ with confidence intervals versus number
of observations cut. Removing the first few observations eliminates the effect of the
transient on τ but slightly widens the confidence interval. The relaminarization time
error was minimized by identifying a threshold three-dimensional energy below which
the turbulent flow always relaminarizes and applying the same value to all runs to
indicate the end of the puff lifetime (E′

k �=0/E0 = 0.001).
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Global turbulence Localized turbulence

L (D) a b β Rec

2π −2.5 × 10−3 6.2
4π −4.3 × 10−3 11.6
8π −6.5 × 10−3 18.1 5.9 ± 2.0 ≈5000

16π 4.6 ± 1.6 3575
32π 4.8 ± 1.6 3450

Table 1. Best fit parameters for an exponential fit 1/τ = exp(aRe + b) and an algebraic fit
1/τ =(Rec − Re)β for different lengths of periodic pipe.

The median time τ (D/U ) is dependent on the parameter Re. As mentioned above,
whether τ diverges to infinity or not at a finite Re is a matter of ongoing debate. In
laboratory experiments using a pipe with D = 20 mm, L = 785D, Peixinho & Mullin
(2006) found evidence that τ ∼ 1/(Rec −Re) with Rec = 1750. In contrast, experiments
by Hof et al. (2006) for D = 4 mm, L =7500D, using a different method to initiate the
puff, found that τ ∼ exp(c1Re), for some constant c1. Numerical experiments by Willis
& Kerswell (2007a ,b) using well-resolved puffs in a 50D periodic pipe, however, show
lifetimes to be significantly different from the exponential scaling, and the simple
power −1 was clearly seen with Rec =1870, overestimating the experimental value
of 1750 (Peixinho & Mullin 2006) by only 7 %. Computational and experimental
limitations have confined observations of τ to O(103 − 104) D/U .

Figure 6 shows the maximum likelihood estimator for 1/τ and 95 % confidence
intervals across a spectrum of pipe lengths. Lifetimes an order of magnitude larger
than the calculations of Willis & Kerswell (2007a) were possible in a pipe twice
as long, L ≈ 100 diameters. In short pipes (figure 6a), where turbulence fills the
domain and is therefore global, the lifetime appears to follow an exponential scaling
1/τ = exp(aRe +b) with values for a and b given in table 1. The 8πD (≈25 diameter)
pipe represents a crossover situation in that the turbulence is only truly pipe-filling
for the highest two data points, whereas it is localized for the four lower Re shown in
figure 6(a). An exponential fit through just the two higher Re points, however, seems
to fit a steepening trend as the pipe lengthens, suggested by the 2πD and 4πD data
sets.

The remaining localized-turbulence points for L = 8πD are better fit by an algebraic
expression τ = 1/(Rec − Re)β (see table 1 for Rec and β). The fit includes two extra
points at lower Re for the 8πD pipe shown in figure 6(b). Doubling to a 16πD

(≈50 diameter) pipe produces a rapid drop in 1/τ and a more clearly defined
curvature in the data. This length increase is significant because the turbulent ‘puffs’
in this reduced model are approximately 20D long (see figure 3). Hence, while such
puffs will be significantly affected by enforced periodicity over ≈25 diameters, this
artificial constraint should be substantially relaxed in an ≈50 diameter pipe and
almost absent in a pipe of ≈100 diameters. By way of confirmation, a 32πD pipe
produces relaminarization data very similar to that of the 16πD pipe with both
being fitted well by the relation τ ∼ 1/(Rec − Re)β based upon similar values for
the fitting parameters (see table 1). Even though the exponent β is relatively poorly
constrained, it is clearly different from the value of one which is observed in fully
three-dimensional simulations (Willis & Kerswell 2007a) and experiments (Peixinho &
Mullin 2006). This quantitative discrepancy is undoubtedly an artefact of the reduced
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Figure 6. Sensitivity of the lifetime, τ (D/U ), of transients to the pipe length. (a) The data for
pipe lengths 2π, 4π and 8π (in D) and exponential fits, 1/τ = exp(aRe + b), through all points
which correspond to global (slug) turbulence. The four leftmost data points for 8π correspond
to localized (puff) turbulence, and a 1/τ ∼ (Rec − Re)β fit is shown for these. (b) The data for
which localized (puff) turbulence is present for pipe lengths 8π, 16π and 32π ≈ 100 diameters
long. Here the best fit lines take the form 1/τ ∼ (Rec − Re)β , where the 1/τ versus (Rec − Re)
plot on log–log scales (inset) shows these fits as straight lines. (The same best fit line for
L = 8π D is plotted in both a and b.) Points with error bars in Re were calculated using a fixed
pressure gradient as opposed to fixed mass flux. This data is plotted using the time-averaged
Re for a 32πD pipe and falls precisely on the fixed mass-flux data. (As for all other points,
100 observations were used for each.)

model and, in fact, is typical of other models for different flows (Bottin & Chate
1998; Lagha & Manneville 2007). What this reduced model does clearly exhibit,
however, is a qualitative change in relaminarization behaviour when the preferred
localized turbulent state (a ‘puff’) is allowed to develop. If the pipe is long enough
to accommodate a ‘puff’, the presence of a critical Re is suggested, whereas when
the pipe is shorter than a ‘puff’ so that the turbulence is always global, no such
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critical threshold is suggested. This behavioural change is entirely consistent with
the seemingly contradictory results obtained recently, using fully three-dimensional
Navier–Stokes calculations in short 5D pipes (Hof et al. 2006) and long 50D pipes
(Willis & Kerswell 2007a).

4.2.1. Constant pressure gradient versus constant mass flux

The reduced model was also used to investigate another open issue: is the form of
driving, being either a constant, imposed pressure difference between the ends of the
pipe or a constant, imposed mass flux, important for the relaminarization behaviour of
turbulent puffs? Hof et al. (2006) use a pressure-drop set-up (constant mean pressure
gradient) in their experiments over a very long pipe, whereas Peixinho & Mullin (2006)
suck fluid through their pipe to produce a constant mass flux. In an averaged sense,
the two methods of driving the flow are equivalent, but instantaneously and locally
the flow dynamics are different – the mass flux rate can fluctuate for a constant mean
pressure gradient flow, and local variations in the pressure gradient cause fluctuations
in the total pressure drop for a constant flux flow. Hence puffs evolving in the two
situations are subtly different, and it is therefore a leading question as to whether
they possess the same relaminarization behaviour.

To answer this, a series of constant pressure-gradient runs were performed in the
32πD pipe, using randomly selected initial conditions from the same long puff run
as for the constant mass flux runs. Again 100 runs were calculated for each data
point at a given pressure gradient and then the median lifetime plotted as a function
of Re in figure 6(b). Note that a horizontal error bar is plotted which indicates ±
standard deviation in the mean Re value. At the largest mean pressure gradient used,
the mean flow rate was Re = 3050 with fluctuations having one standard deviation of
±25. This error in Re should inversely scale with the length of pipe for flow driven by
a pressure head, provided that the disturbance remains localized. For the long pipe of
Hof et al. (2006) such variations should be insignificant (1 part in 104), whereas for a
short (numerical) periodic pipe very large variations O(10 %) can be expected. The
new data points sit precisely on the 32πD constant mass-flux curve, indicating that
for at least the long pipe (≈100 diameters), the precise form of driving is unimportant
for the probability of puff relaminarization.

4.3. Characteristics of the laminar–turbulent boundary: short pipe

Given an initially laminar flow, small perturbations decay back to the laminar
flow, and larger perturbations develop into turbulence for sufficiently large Re. This
naturally leads to the question of what characterizes the dividing set of flows, for
which a small perturbation may lead to either laminar or turbulent flow. Itano
& Toh (2001) used a shooting method to find such a boundary in channel flow
and discovered that the flow trajectory on the boundary settled upon what they
thought was a travelling wave solution but which was later identified as a slowly
varying part of a periodic orbit (Toh & Itano 2003). This orbit is stable within the
manifold of flows on this laminar turbulent boundary or ‘edge’. A similar situation
is found in plane Couette flow (Viswanath 2007; Schneider et al. 2008), where a
single simple attractor is found. Pipe flow exhibits different characteristics, however,
with Schneider et al. (2007b) finding a chaotic attractor in which trajectories pass
near exact travelling wave solutions (Mellibovsky & Meseguer 2007; Duguet et al.
2008). When the laminar–turbulent boundary dynamics are restricted within certain
symmetry subspaces, however, simple attractors do emerge (Duguet et al. 2008).
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Figure 7. Edge trajectories for L = πD. Exact travelling wave solution found near the triangle
at Re =6500 (shown in figure 8) has very similar structure to that found at the circle for
Re = 10 000.

Pipe flow is not so different from channel flow, and yet they display different
dynamics on the boundary. It is not difficult to imagine therefore that the severe
truncation of our model could also lead to a loss of chaotic behaviour on the
boundary. In this section we show that the model preserves the chaotic end state for
trajectories on the boundary and that exact solutions exist. This motivates extension
of the results to long computational domains, where undirected three-dimensional
calculations would be prohibitively expensive.

Boundary or edge trajectories for the model are shown in figure 7, for L = πD and
over a range of Re. While a difference between the edge and developed turbulence
may be seen by a rapid increase in energy, a clearer measure appears to be β related
to the pressure gradient required to maintain the fixed flux (see (2.1)) or equivalently
the friction. The pressure gradient is less than 10 % greater than the laminar value
when on the edge and is also smooth in time, whereas after a sudden increase to
turbulence it varies as rapidly as the energy. At the lowest Re shown in figure 7 the
energy of the edge is highly variable in time. At the next Re =6500 a period of slow
variation is observed. Duguet et al. (2008) have recently demonstrated that the edge
can be used to find exact solutions by identifying phases in which the flow has a
relatively simple temporal behaviour. Such an episode is marked by a triangle, where
the instantaneous flow is used as an initial condition for a Newton–Krylov code. This
converges to the exact solution pictured in figure 8(a), confirming that travelling wave
solutions do exist for the model. The flow exhibits fast streaks towards the walls,
and slow streaks are shed towards the centre. The state found is also very similar
to that marked by a circle at Re = 10 000, when the trajectory for a while appears
to settle towards a steady (translating) state. As Re increases the variability on the
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Figure 8. (a) Cross-sections of an exact travelling-wave solution L = πD, Re = 6500, wave
speed c = 1.563U at z = 0, (1/2)L. Dark regions are slower than the laminar profile and white
regions faster. (b) Normalized energy E′

k �=0/E0 on the boundary (squares) and of turbulence
(circles). The crosses indicate the normalized total disturbance energy E′/E0 on the boundary.
The slope for the total disturbance energy (and also E′

k �=0/E0) is −3, implying that the
disturbance amplitude A ∼ Re−1.5. At Re = 5300, E′

k �=0/E0 ≈ 0.011 in the reduced model and
≈0.014 in the fully three-dimensional test case.

edge surprisingly decreases, more so than can be explained by the increasing viscous
time. The viscous time D2/ν scales as Re in our time units, and longer trajectories
at larger Re have been shown in figure 7 to compensate. A possible explanation for
the decreasing variability is that the eigenvalues of the unstable directions from the
travelling waves decrease with increasing Re as in plane Couette flow (Viswanath
2007; Wang et al. 2007), thus enabling closer and longer visitations.

The variability of the boundary in terms of energy or any other chosen amplitude
measure also, of course, indicates the range of such attributes for initial conditions
which will trigger turbulence. The fact that it is easier to trigger turbulence as Re
increases (e.g. Hof, Juel & Mullin 2003) is reflected in the decrease in the mean
boundary energy as Re increases seen in figure 8(b). Error bars in this figure represent
the mean and one standard deviation above and below this mean, but nevertheless,
a clean scaling emerges for the disturbance amplitude of A ∼ Re−1.5. Mellibovsky &
Meseguer (2006) found this scaling when considering streamwise perturbations and
Peixinho & Mullin (2007) in laboratory experiments with obliquely oriented jets.

4.4. Characteristics of the laminar–turbulent boundary: long pipe

The bisection procedure (Itano & Toh 2001; Schneider et al. 2007b; Duguet et al. 2008)
for isolating the laminar–turbulent boundary can equally be applied to flow within a
long pipe, although the computational demands become increasingly intensive. The
2+ε-dimensional model is ideal for a reconnaissance of likely behaviour, including
identification of the form the edge state takes. With this motivation, trajectories on
the laminar–turbulent boundary were found for a pipe ≈50 diameters long, using the
pressure gradient to distinguish between edge and turbulent flow states. Interestingly,
the attracting edge state which emerges looks exactly like a turbulent puff except at
the trailing edge (upstream region): compare figures 3 and 9(a). In a turbulent puff
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(a)
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Figure 9. (a) Snapshots of axial vorticity at two different times from a laminar–turbulent
boundary trajectory; L = 16πD, Re = 4000; 20D of ≈50D shown. The disturbance is localized
but with an extended upstream region. (b) An exact solution shown over two axial periods,
L = 1.694D, discovered using the code of Pringle & Kerswell (2007). (c) The exact solution of
figure 8 found by the Newton–Krylov code of Duguet et al. (2008), L = πD.

this is the most energetic part possessing a fluctuation energy level comparable to
homogenized slug turbulence (see Willis & Kerswell 2008) at higher Re. However,
the edge state is noticeably smoother even at Re = 4000 (figure 9) compared to a
puff at Re = 2600 (figure 3) which has finer scales. The similarities between the two
are the strong wall structures slanting into the axis at the upstream region, a region
in which the axial vorticity reaches the axis (the trailing edge region), followed by a
gradual relaminarization/decay downstream. Interestingly it is the upstream region
that waxes and wanes (compare the two axial vorticity snapshots of figure 9) rather
than the passive-looking downstream wake.

The edge state remains localized just like the turbulent puff up to Re =3000, but
surprisingly it also remains localized for much higher Re when the puff has given
way to (global) slug turbulence. To emphasize this, the localized edge state shown in
figure 9 at Re = 4000 was generated starting from the global disturbance of figure 3.
The fact that the edge state remains puff-like throughout the puff-to-slug transitional
Re range suggests that slug turbulence is destabilized puff turbulence rather than a
separate state occupying a different part of phase space. This is certainly consistent
with simulations in which a puff state smoothly evolves into a slug by slowly expanding
upstream as well as downstream. A corollary of this, of course, is that a puff and a slug
cannot coexist at a given Re: to our knowledge there are no reported experimental
observations to contradict this claim.

Figure 9 also shows the axial vorticity for a travelling wave with shift-and-reflect
symmetry, found using the method of Pringle & Kerswell (2007), and for the travelling
wave shown in figure 8 (which has no special symmetry). Both have axial vorticity
slanted from the wall into the central axis reminiscent of the turbulent puff and
edge state. A recent search for coherent fast-streak states within turbulent puffs has
indicated that the flow transiently resembles travelling wave states upstream and
downstream of the trailing edge region (Willis & Kerswell 2008). Given that the
energetic trailing edge region is absent in the edge state, there seems an even higher
likelihood of seeing coherent states there.

Although the findings in this 2+ε-dimensional model are only suggestive of what
may occur in the fully three-dimensional setting, they are sufficiently interesting to
motivate a fully three-dimensional long-pipe computation. This is currently underway.

5. Discussion
In this paper, we have described the numerical formulation used to simulate tran-

sitional pipe flow (Willis & Kerswell 2007a , 2008; Duguet et al. 2008). This is based
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upon the poloidal–toroidal potential decomposition of the velocity field discussed
by Marqués (1990), where the difficulty of coupled boundary conditions has been
bypassed by influence matrix methods here. Reducing the system to five simple
second order equations, the method is accurate, relatively simple to implement and
computationally efficient. This has then been used here to explore dynamic subspaces
in the hope of finding a reduced system to aid understanding.

No evidence for turbulent transients has been found in axisymmetric pipe flow,
confirming an earlier investigation (Patera & Orszag 1981), or in helical pipe flow,
consistent with the work by Landman (1990a, b). Rotating pipe flow displays a
classic supercritical bifurcation route to turbulence (Mackrodt 1976; Toplosky &
Akylas 1988; Landman 1990a , b; Barnes & Kerswell 2000) which has no bearing
on the non-rotating situation. A brief search in rotating helical pipe flow failed to
find evidence for any disconnected subcritical branches of solution which may have
reached back to the non-rotating limit. A 2+ε-dimensional model, which represents a
minimal three-dimensionalization of the axisymmetric limit, does, however, possess a
subcritical transition scenario and all the important spatio-temporal characteristics of
fully resolved pipe flow at Re of the same order of magnitude. Localized disturbances,
structurally similar to turbulent puffs, are found in the model at low Re (≈2600),
which slowly delocalize at intermediate Re (≈3200) and rapidly expand into slugs at
high Re (≈4000). Exact unstable travelling wave solutions also exist within the model
and appear to underpin the dynamics in phase space.

Within this 2+ε-dimensional model, the relaminarization statistics of the puffs have
been examined in pipes of varying lengths. For pipes long enough to allow localized
turbulence to manifest itself, a critical Re is suggested by the data above which the
‘puff’ becomes sustained. On the other hand, if the pipe is short so that turbulence
fills the whole domain, the data are consistent with only transient behaviour; i.e.
the turbulence always dies eventually. This qualitative change in behaviour as the
computational domain is varied is consistent with the seemingly contradictory results
found recently in fully three-dimensional simulations (Hof et al. 2006; Willis &
Kerswell 2007a). The need to resolve the spatial inhomogeneity of the puff state
properly in numerical experiments is clear.

Reconciling the conclusions drawn from the experimental data sets (Hof et al.
2006; Peixinho & Mullin 2006) remains a challenge. The existence of both types of
τ − Re scalings are not mutually exclusive, however, and resolution of the issue may
be related to the known sensitivity of the flow to the exact structure and amplitude of
a perturbation. Experiments (Darbyshire & Mullin 1995) and simulations (Faisst &
Eckhardt 2004; Moehlis, Faisst & Eckhardt 2004) have indicated that the laminar–
turbulent boundary has a fractal-like structure in which very small changes to the
perturbation can completely change the fate of the flow; finite lifetimes can then
exist in the presence of an attractor because an initial disturbance, apparently large
enough to trigger a puff, may actually not be within its basin of attraction (e.g. Moehlis
et al. 2004; Mullin & Peixinho 2006). In addition, if the laminar–turbulent boundary is
closely intertwined with the attractor in phase space, a trajectory can easily be nudged
out of the attractor by noise effects, such as pipe roughness, temperature changes, pipe
misalignment and vibrations. Noise-induced relaminarizations of established puffs for
Re above Rec do not therefore contradict the existence of a critical Re. Conversely,
noise could also artificially maintain puff turbulence in the absence of an attractor.
There is clearly a need for further experimentation.

It is worth remarking that longer transients in the 100D pipe (i.e. Re closer to Rec)
could, in principle, have been calculated given the computational savings available in
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the model. It was found, however, that the puffs begin to delocalize for Re ≈ 3200,
indicating that by Rec = 3450, the puff has become unstable to slug-like turbulence.
The same issue occurs in the real system: puffs delocalize to become slugs for
Re =2250–2500 (Willis & Kerswell 2008). No claim has been made in the literature
that expanding slugs are other than permanently sustained once generated.

The 2+ε-dimensional model has also presented an opportunity to probe the possible
dynamics on the laminar–turbulent boundary in long-pipe flow. Calculations indicate
that the attracting state in this set is a localized puff-like structure which is smoother
and less energetic in the trailing edge region than its turbulent puff counterpart. Also
intriguingly, this end state remains localized way beyond in Re when the puff has
delocalized. This tends to suggest that the turbulent puff still exists as a solution
but has become unstable to a slug state. The variability of the flow on the laminar–
turbulent boundary also highlights the variability in initial conditions, which can
trigger turbulence. Just focusing on the mean energy gives a disturbance amplitude
scaling A ∼ Re−1.5 consistent with some numerical computations (Mellibovsky &
Meseguer 2006) in a short pipe and laboratory experiments with a carefully specified
jet configuration, designed to excite a coherent vortex (Peixinho & Mullin 2007).
Clearly, exploring how far this realization can be usefully developed is a promising
area for future research.

In conclusion, we have introduced a model of pipe flow severely truncated in its
azimuthal degrees of freedom but otherwise fully resolved. This notwithstanding, the
remaining system captures all of the rich dynamical behaviour observed in pipe flow
but obtained at a fraction of the computational cost for the full three-dimensional
situation. It therefore presents a very accessible arena in which to test ideas and
gain some insight quickly before deciding to invest a considerable effort in the full
three-dimensional system.

Many thanks to Yohann Duguet and Chris Pringle for finding exact solutions in
the model. The authors would also like to thank an anonymous referee for suggesting
the ‘2 + ε’ nomenclature. This research was funded by the EPSRC under grant
GR/S76144/01.

Appendix A. Boundary conditions
The Navier–Stokes equation (2.1) plus the boundary condition u = g(θ, z) are

equivalent to (2.4) provided that on the boundary

n̂ · ∇ ∧
[(

∂t − 1

Re
∇2

)
u + b

]
= 0, (A 1)

where n̂ is its normal (see Marqués 1990). This condition ensures the term in the
square brackets is equal to a gradient, such as the pressure. If not imposed, this term
may be any χ ẑ, where ∇2

hχ =0. If this is not a gradient, then an unknown body force
is introduced. For the axisymmetric case χ is constant; the curl of χ ẑ is then zero;
and therefore the condition is redundant. Otherwise, from the diffusion term in (A 1),
using the properties ∇2u = −∇ ∧ ∇ ∧ u and ∇ ∧ ∇ ∧ ( ẑf ) = ∇(∂zf ) − ẑ∇2f , one finds

r̂ · ∇ ∧ ∇2u = r̂ · ∇ ∧ ∇ ∧
(

ẑ∇2
hψ

)
+ r̂ · ∇ ∧ ∇ ∧ ∇ ∧

(
ẑ∇2

hφ
)

+ ∂zz r̂ · ∇ ∧ u

= ∂rzψ1 − 1

r
∂θφ2 + ∂zz r̂ · ∇ ∧ g,
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which leads to the last condition of (2.5). The other conditions simply express
u = g(θ, z) with the gauge freedom φ = 0 on the boundary.

The simplified system for the axially averaged flow, h(r, θ), arises because there
exists a closed circuit c that is not simply connected running along the axial direction.
This has an associated condition∫

c

[(
∂t − 1

Re
∇2

)
u + b

]
· dl = 0,

which together with Pz on the second curl of the Navier–Stokes equations leads to the
governing equation for h. The boundary condition h =0 assumes Pz(gz) = 0, which
otherwise would correspond to a translating pipe or moving frame.

Appendix B. Solution for coupled boundary conditions
Each Fourier mode for ψ , φ is expanded as the superposition

ψ(r) = ψ̄(r) + a ψH (r), (B 1)

φ(r) = φ̄(r) + b φH (r),

where the coefficients a and b are scalars. Subscripts k and m have been dropped.
The barred and superscripted functions solve two distinct systems. Firstly,(

∂t − 1

Re
∇2

)
φ̄2 = −(1 − Pz) ẑ · ∇ ∧ ∇ ∧ b, (B 2)

∇2φ̄1 = φ̄2,

∇2
hφ̄ = φ̄1,(

∂t − 1

Re
∇2

)
ψ̄1 = ẑ · ∇ ∧ b, (B 3)

∇2
hψ̄ = ψ̄1,

with boundary conditions

φ̄2 = φ̄ = 0, −φ̄1 = gz, ∂rψ̄1 = 0,

{
ψ̄ = 0 if m = 0,

−∂rψ̄ = gθ if m �= 0,
(B 4)

where ∇2 ≡ (1/r)∂r + ∂rr − m2/r2 − α2k2 and ∇2
h ≡ (1/r)∂r + ∂rr − m2/r2. This time-

dependent system is written in matrix–vector form, according to the time and radial
discretization, then inverted sequentially for φ̄2 → φ̄1 → φ̄ and ψ̄1 → ψ̄ . The second
homogenized system is (

∂t − 1

Re
∇2

)
φH

2 = 0, (B 5)

∇2φH
1 = φH

2 ,

∇2
hφ

H = φH
1 ,(

∂t − 1

Re
∇2

)
ψH

1 = 0, (B 6)

∇2
hψ

H = ψH
1 ,
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with boundary conditions

φH
2 = 1, φH

1 = φH = 0, ∂rψ
H
1 = 1,

{
ψH = 0 if m = 0,

∂rψ
H = 0 if m �= 0.

(B 7)

As this system has no time-dependent b, solutions with superscript H may be
precomputed. The original boundary conditions on φ and ψ are satisfied upon
reconstruction from the barred and superscripted variables. Two boundary conditions
are satisfied by construction for all cases: as φ̄ and φH satisfy trivial boundary
conditions, φ = φ̄ + b φH = 0 on the boundary; similarly −φ1 = gz is satisfied auto-
matically.

For axisymmetric modes, m = 0, the system is of lower order, as ψ always appears
as ∂rψ , including in the boundary condition. The condition involving b is not required
for this case (see Appendix A). The simplest solution is to add the boundary condition
ψ = 0 so that we may invert for ψ for all modes. When m = 0 the remaining two
boundary conditions which couple the potentials are satisfied by selecting scalars a

and b according to the following evaluated on the boundary:

a = −(∂rψ̄ + gθ )/∂rψ
H , b = −(∂rzφ̄ − gr )/∂rzφ

H if m = 0. (B 8)

For non-axisymmetric modes, m �= 0, the condition −∂rψ = gθ is satisfied auto-
matically. The last two conditions are satisfied by solving the system for a and b

evaluated on the boundary,[
1
r
∂θψ

H ∂rzφ
H

−∂rzψ
H
1

1
r
∂θφ

H
2

] [
a

b

]
= −

[
1
r
∂θ ψ̄ + ∂rzφ̄ − gr

Re r̂ · ∇ ∧ b − ∂zz r̂ · ∇ ∧ g

]
if m �= 0. (B 9)

As this only requires the inversion of a 2 × 2 matrix and as the H -functions are
pre-computed, this is an inexpensive way to ensure all boundary conditions are
simultaneously satisfied to machine precision.
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